How to support parallel computing with constant tensor in a self-defined layer?
class MyLayer(torch.nn.Module):
def __init__(self):
self.rgb2ycbcr = torch.cuda.FloatTensor([[.299,.587,.114],
[-0.168735892 ,- 0.331264108, 0.5],
[.5,- 0.418687589, - 0.081312411]])def data_parallel(module, input, device_ids, output_device=None):
if not device_ids:
return module(input)
if output_device is None:
output_device = device_ids[0]
replicas = nn.parallel.replicate(module, device_ids)
inputs = nn.parallel.scatter(input, device_ids)
replicas = replicas[:len(inputs)]
outputs = nn.parallel.parallel_apply(replicas, inputs)
return nn.parallel.gather(outputs, output_device)Last updated
Was this helpful?